ADAM17-mediated CD44 cleavage promotes orasphere formation or stemness and tumorigenesis in HNSCC
نویسندگان
چکیده
CD44, an extracellular matrix (ECM) receptor, has been described as a cancer stem cell marker in multiple cancers, including head and neck squamous cell carcinoma (HNSCC). HNSCC orasphere formation or stemness was characterized by cleavage of CD44, and thus we hypothesized that this proteolytic processing may be critical to stemness and tumorigenesis. We tested this hypothesis by examining the mechanisms that regulate this process in vitro and in vivo, and by exploring its clinical relevance in human specimens. Sphere assays have been used to evaluate stemness in vitro. Spheres comprised of HNSCC cells or oraspheres and an oral cancer mouse model were used to examine the significance of CD44 cleavage using stable suppression and inhibition approaches. These mechanisms were also examined in HNSCC specimens. Oraspheres exhibited increased levels of CD44 cleavage compared to their adherent counterparts. Given that disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) is a major matrix metalloproteinase known to cleave CD44, we chemically inhibited and stably suppressed ADAM17 expression in HNSCC cells and found that these treatments blocked CD44 cleavage and abrogated orasphere formation. Furthermore, stable suppression of ADAM17 in HNSCC cells also diminished tumorigenesis in an oral cancer mouse model. Consistently, stable suppression of CD44 in HNSCC cells abrogated orasphere formation and inhibited tumorigenesis in vivo. The clinical relevance of these findings was confirmed in matched primary and metastatic human HNSCC specimens, which exhibited increased levels of ADAM17 expression and concomitant CD44 cleavage compared to controls. CD44 cleavage by ADAM17 is critical to orasphere formation or stemness and HNSCC tumorigenesis.
منابع مشابه
Cleaved CD44 intracellular domain supports activation of stemness factors and promotes tumorigenesis of breast cancer
CD44 plays a role in the progression of tumors and is expressed in cancer stem cells (CSCs). However, the mechanisms underlying the crosstalk of CD44 with stemness genes in CSC maintenance remains unclear. In this study, we demonstrated how the cleaved intracellular domain of CD44 (CD44ICD) activates stemness factors such as Nanog, Sox2 and Oct4, and contributes to the tumorigenesis of breast c...
متن کاملCell–matrix interaction via CD44 is independently regulated by different metalloproteinases activated in response to extracellular Ca2+ influx and PKC activation
CD44 is an adhesion molecule that interacts with hyaluronic acid (HA) and undergoes sequential proteolytic cleavages in its ectodomain and intramembranous domain. The ectodomain cleavage is triggered by extracellular Ca(2+) influx or the activation of protein kinase C. Here we show that CD44-mediated cell-matrix adhesion is terminated by two independent ADAM family metalloproteinases, ADAM10 an...
متن کاملHyaluronan and the interaction between CD44 and epidermal growth factor receptor in oncogenic signaling and chemotherapy resistance in head and neck cancer.
OBJECTIVES To investigate whether hyaluronan (HA) and CD44 (hereinafter HA-CD44) promotes head and neck squamous cell carcinoma (HNSCC) chemotherapy resistance and whether HA-CD44 promotes epidermal growth factor receptor (EGFR)-mediated oncogenic signaling to alter chemotherapy sensitivity in HNSCC. Hyaluronan, a glycosaminoglycan component of the extracellular matrix, is a ligand for the tran...
متن کاملA role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44.
Ectodomain shedding is a proteolytic mechanism by which transmembrane molecules are converted into a soluble form. Cleavage is mediated by metalloproteases and proceeds in a constitutive or inducible fashion. Although believed to be a cell-surface event, there is increasing evidence that cleavage can take place in intracellular compartments. However, it is unknown how cleaved soluble molecules ...
متن کاملEGFR Kinase Promotes Acquisition of Stem Cell-Like Properties: A Potential Therapeutic Target in Head and Neck Squamous Cell Carcinoma Stem Cells
Members of the EGFR/ErbB family of tyrosine kinases are found to be highly expressed and deregulated in many cancers, including head and neck squamous cell carcinoma (HNSCC). The ErbB family, including EGFR, has been demonstrated to play key roles in metastasis, tumorigenesis, cell proliferation, and drug resistance. Recently, these characteristics have been linked to a small subpopulation of c...
متن کامل